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The ideal transformer model n
Hypothesis

A transformer is a static electrical
machine made by of two (or more)
coils (or windings) placed so that
they are linked by the same
magnetic flux.

a) Flux varies sinusoidally in the
core
+

Ideal transformer:

b) Permeability uin the core is - Pl pa"‘s_\r
infinite: N Y ——
c) The fluxis entirely confined into * °J T d.] P ’
the core and links all of the N 7 _’N‘
turns of both coils (or windings) P . | i1 | Winding 1
d) Core losses are zero (electrical | * et C“’_’_gN
conductivity of the magnetic  _ 4 4 G5
core is zero) E
................ Magneti¢c-Gore -

e) Winding resistances are zero
(Electrical conductivity of the

windings is infinite) Figure 1.1 — Two-winding fransformer.



The ideal transformer model n

» Hypothesis (b), (¢) and (d) > The flux ¢ that links winding 1 is the
same that links winding 2 (i.e., there is no leakage of the flux)

» Winding resistances are zero (e) - the voltages e; and e,
induced by the changing flux must equal the terminal voltages
viand v, (Faraday’s law).

v1=€1=Nla (]])
do
U2=€2=NZE (]2)
~~ — Flux paths ——
........... f o e X
T T alP,
- o+ — r‘) |
S 1
C: . H
V2 €2 T T IDN,
- (}+ — +

Figure 1.1 — Two-winding transformer.



The ideal transformer model n

» Flux varies sinusoidally in the core (a) 2 phasor representation of
voltages: . . . .

Jw — jw — jw — jw —

vy =V, v = V3,61 = Ep e = B

» Dividing Eq. (1.1) by (1.2) written in the frequency domain, we
obtain:

= 1 (1.3)

Figure 1.2 — Schematics representation of an ideal two winding
transformer



The ideal transformer model n

> By applying Ampeére'’s law (56{, H-dl=[[,]- dS), where H is the magnetic

field strength and J is the current density, around each of the closed

paths ¢ of flux shown by dotted lines in Fig. 1.1 and the corresponding
surface § we obtain:

~ — Flux paths ——~
Y

p— “o(f) ""----.............---.,.“‘
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v; e g Ny E
_ 0+ : — 4’ : Q .:.
iy | SEEE S :
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Figure 1.1 — Two-winding transformer.



The ideal transformer model

» Thanks to the hypothesis of infinite permeability (b), it is possible to say that

$, H-dl=0.If this were not true, flux density (being equal to uH) would be

infinite. As a consequence, converting the currents to phasor form Eq. 1.4
becomes:

0 — Nll_l - Nzl_z (] 5)

(1.6)

Note that I, and I, are in phase if we choose the current to be like in Figure

1.1, or 1.2. If the direction chosen for either current is reversed, they are 180°
out of phase.



The ideal transformer model n

» The transformer winding across which an impedance or another load may
be connected is called the secondary winding, and any circuit elements
connected to this winding are said to be on the secondary side* of the
transformer.

> The winding which is toward the source of energy is called the primary
winding on the primary side*.

> If an impedance Z, is connected across winding 2 of Figs. 1.1 or 1.2 we get:

— ]72

2
> By substituting for I, and I,the values found in Egs. (1.3) and (1.6)
(" n\2T Ny\? 5
— 1) - (X2} X _ (f2 !
Zy = (Nl/NZ)]_l B (Nl) I, (Nl) 22 (1.8)

Where Z, is the equivalent impedance seen by the primary winding Z, = %
1

* In the power system energy often will flow in either direction through a transformer and the
designation of primary and secondary loses its meaning.



The ideal transformer model

Summ(]ry _~— — Flux paths ——
[ IS A
Hypothesis: o+
> Flux varies sinusoidally in the N ¢ B
core o
] 4 =
> ldeal transformer vy : e —S N,
_ ot * _ >
Mqin equﬁonS: R .
“71' — N1 (‘l 3) |I_1| — NZ (‘l 6)
V2l Ny . ;| N; .

Power balance: it is also worth noting that the complex power input to the
primary winding equals the complex power output from the secondary
winding since we are considering an ideal fransformer. In fact:

1=Vl =2V 2, =0, =S, (1.9)
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Magnetically coupled coills

Hypothesis

Ideal transformer:

Permeability puin the
core is infinite;

The flux is confined to
the core and links all of
the turns of both
windings

Core losses are zero
(Electrical conductivity
of the core is zero)

Winding resistances are
zero

STUDY CASE:

Permeability uin the core
is finite;

The flux is not confined to
the core. Not all the flux
linking one of the
windings links the other
windings

Core losses are zero
(Electrical conductivity
of the core is zero)

Winding resistances is
present

Real transformer:

Permeability puin the
core is finite;

The flux is not confined
to the core. Nof all the
flux linking one of the
windings links the other
windings

Core losses are

occurring

Winding resistances is
present



Magnetically coupled coills n

In Fig. 1.3 the direction of current i, is chosen o X ,4p expresses:
produce flux (according to the right-hand rule) in = quantity X (flux or
the same sense as i; when both currents are inductance)
either positive or negative. This choice gives = of coila

positive coefficients in the equations which " due fo current i,
follow.

Figure 1.3 (a):
Mutual flux due to currents i; and i,

. JCTE———— — ) e .

L ; N iy
—— W Ly—~ et W
+$ . +j N, > 2 \V (j__{‘_’ij j T ; ] +
g ; 2 2
! e e ‘-




Magnetically coupled coills m

In Fig. 1.3 (b) and (c) it is shown the effect of each of X p expresses:
the two currents, respectively i; and i,, acting alone. > guonﬂfyx (ﬂgx
or inductance)
> of coil a
I T E— N T—— »due to current i,
h Bt
G T—_D s/—_ LQIW -
by L P L < { |  Figure 1.3 (b):
ID Sl Leakage flux ¢q;
. a9 and mutual flux ¢4
........................................... due to i, alone

............. > d))z ecssemesssecsncavese,
4 .‘. ,.' . ' 12
: Py G
Figure 1.3 (c): “——H A= i
o L,, g e, P2l
Leakage flux ¢, — 7 D ¥
and mutual flux ¢4 : =
due _I_O iz Olone .............................................




Magnetically coupled coills n

i; acting alone

' P11 = P21 + D1y

=,

Figure 1.3 (b):
Leakage flux ¢;; and mutual flux ¢,; due to i;alone

The current i; acting alone produces flux ¢,;which has a mutual component ¢,4
linking both coils and a small leakage component ¢4; linking only coil one. The flux
linkages of coil 1 due to current i; acting alone are given by:

A1 =Nipy1 = Ly104 (] -]O)

where N; is the number of turns and Ly, is the self-inductance of coil 1.
Under the same condition of i; acting alone the flux linkages of coil 2 are given by:

A1 = Nyppg = Lyqiy (] N ])

where N, is the number of turns and L, is the mutual-inductance between the coils.



Magnetically coupled coills m

i, acting alone

Lttt on > d)]z ...................... . s o
,'" .", lo _I_
L] . I ] ' - —
5 L~ P22 = P12 + Py
C__;_D D R |
? L t o
_E___ H 22 3 1 - ?
............................................. AL S Figure 1.3 (c):
P22 Leakage flux ¢,; and mutual flux ¢4, due to i, alone
(c)

The current i, acting alone produces flux ¢,, which has a mutual component
¢, linking both coils and a small leakage component ¢,; linking only coil one. The flux
linkages of coil 2 due to current i, acting alone are given by:

A2z = Nogpoy = Lyl (] -]2)

where N, is the number of turns and L,, is the self-inductance of coil 2.
Under the same condition of i, acting alone the flux linkages of coil 1 are given by:

A2 = N1z = Lyzi; (] -]3)

where N; is the number of turns and Ly, is the mutual-inductance between the coils.
Please note that mutual inductance is a single reciprocal property of the coils, and so
L1, = L,y > 0 because of i; and i,.



Magnetically coupled coils i
: P - ¢ — iy
T OWTTAED ¢ SNGELT YT
3 e L
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV Figure 1.3 (a):

Mutual flux due to currents iy and i,

When both currents act together, the flux linkages add (the tfransformer is supposed,
for the moment, to be linear) to give:

A = A11 + Aip = Lyqgig+ Lypiy (1.14)
Ay = Aoy + A1 = Lpgig+ Lopyiy (1.15)

It is now possible to rewrite Eq. (1.1), expressing Faraday's law, but considering a
winding resistance greater than O :

. dA . di di
v1=T1l1+d_tl=T1l1+L11d_t1+L12d—t2 (]]6)
. dA . di di
v2=T2l2+d_t2=Tzlz+L21d_t1+L22d—t2 (]]7)
where Ny ¢ _ 4 namely the flux linkages.

dt  dt’



Magnetically coupled coills

The obtained equations are:

_ . dll _ . dll dlz

171 = 7'111 + dt = 7'111 + L11 + L12 it

_ . d/lz _ . dll dlz

172 = T'zlz + dt = T'zlz + L21 + Lzz at

These can be modified as follow:

A dll Nl dll Nl dll dlz
171—7”111+——7‘11+L11 I L12N o +L12N o +L1ZE
/1 _ dlz Nz dlz NZ dlz dll
Uy =13l +——7”212 + Ly —= ot L21N ot +L21N o +L21E

If we now considera = N;/N,

. d . . .
v =Nl T [(L11—L1pa)i; + Lipaiy + Lypis]

. d . . .
Uy =Talp + o [((Laz—Lp1/a)iz + Lag/aip + Lz iq]

(1.16)

(1.17)

(1.16)

(1.17)



Magnetically coupled coills n

v =1l + ar [(L11—L12a)i; + Lipaiy + Lypi5]

. d . . .
Uy =1hly + i [(Lyz—Lp1/a)iz + Lip/aiz + Lypis]

The quantity (L{; — alLq,) is the leakage inductance L;; (by knowing that ¢;,= ¢,; +

¢¢;) and that al,, is the magnetizing inductance associated with the mutual flux ¢,
linking the coils due 1o i4

(L;; —al,,) =L, = Leakage inductance 1
(Lo, — Ly;/a) = L,; = Leakage inductance 2

d L L
V1 = T1i1 + E[Lllil + N1 (£ il +£l2)]

N, Ny
d Lqi Lyq
vy = Tyiy + — |Lysiz + N (—i +—i)]
2 = T3l dtlzzz 2\, 2ty b

Note that Lyy = Ly, =22 = 2L = X2¢21 - 112 from (1.10) and (1.13)

l2 U1 l1 2



Magnetically coupled coills n

; dJ ] Lqio . Ly .
V1 =Nl + — Lllll + N1 (ﬂ 1 + =21 lz)]
de L Nq

N>
Vy = Tyiy + % :LZZiz + N, (%2 i, + LN—Zzl il)] by referring this to the primary we have:
Vo = Tyia + % [LZIiza + Nya (%2 i, + LN_221 il)]
voa = rplp (P T Lt N Mo (R + )
voa =maip it G| Laia Nt (R + )

A d [ . .
vpa = (a’1) 2+ S[(a%Ly) 2 HNy (B21, + 2214, )]
1 2

Now, the terms in the red squares, common to both equations, are equal to:

L L
Nl (Nilz iz + Nizlll) = aL21(i1 + iz/a)



Magnetically coupled coils

. d . Lo . L21.)]
=r — | L+;1 N(—L —1
(41 1ll+dt[1ll+ 1N21+N12

i, d i Liy. . L.
vya = (ary) EZ +— [(azLZI) ZZ H N, (Nilz iy + Nizl 11)]

The terms in the red squares, common to both equations, are equal to:

L L
Nl (Nilz iz + Nizlll) = aL21(i1 + iz/a)

. d . o
v =1l + E[Luh + alyq(iy +iz/a) ]

i d i .
vya = (a®ry) %2 + [(aszz) ;2 + al,1(i; +iz/a) ]

, L de, o Note that the notation of the equations
vy = 1ply + - [Lyjiz + alog (i +iz/a) | refers to time-domain quantities while the
one in the figure refers to frequency-

domain quantities (i.e. phasors)



Magnetically coupled coills

An important equivalent circuit, referred r wlLy —aLy] a%(Lyy — Lg/al a’r,
to the primary winding, for the mutually
coupled coils is shown in Fig. 1.4.

All the quantities of the secondary
winding are referred to the primary in
analogy with Eq. (1.8). It is possible, by

writing Kirchhoff's voltage equation
around the path of each of the currents Figure 1.4: An AC equivalent circuit with secondary

I . current and voltage redefined and a = N1/N2.
I; and EZ to obtain the two fundamental
Eq.(1.18) and (1.19).

o _ . _ T
KVLy: Vi=I5Lr +1(wly;) —al;(jwly;) + a(jwlyq) (11 + z/a)

Vl = 1_17"1 + I_l(ja)Lll) + I_z(ja)L21) - Eq (118)

_ L L L L _ I
KVL,: aV, = (f) a’ry + (i) a’(jwly,) — (ﬁ) a? (jw %) + a(jwLyq) <11 + 5)

___— = - (L L =
Vo = Iy + [(jwlaz) — I (J(U %) +1; (J(U 21) + 1 (jwly,)

a

VZ = 1_27"2 + I_z(ja)Lzz) + I_l(j(l)sz_) - Eq (119)




Magnetically coupled coills
Summary

Hypothesis:

» Flux varies sinusoidally
in the core

» Real transformer but
neglecting core losses

> Equivalent circuit Figure 1.5 The equivalent circuit of Fig. 1.4 with inductance
referred to the primary parameters renamed as follow:
winding x; = w(Ly; —al,;) = wly; = Leakage inductance 1 *

X, = w(Ly, — Ly, /a) = wl,, = Leakage inductance 2 *
B,, = (awL,,)~! = Shunt magnetizing susceptance*

Main equations:

(mn+jwli) + (wlix)]; (1.18)
(GwLy ) + (1 + jwLyy)I, (1.19)

* It is possible to prove that the quantity (Ly; — aL,,) is the leakage inductance L,; by knowing
that ¢,,= ¢, + ¢1; and that aL,; is a magnetizing inductance associated with the mutual flux ¢,
linking the coils due to i, since:

aly, = ﬂm = 1\-1—11¢21 (1.20)
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The equivalent circuit of a single-phase m
transformer

A further step has to be done to match the physical characteristics of the practical
transformer. In fact, the previous equivalent circuit presents three main deficiencies:

> It does not reflect any current or voltage transformation,

» It does not provide for electrical isolation of the primary from the secondary

> It does not account for the core losses.

Observation#1:

If a sinusoidal voltage is applied to the primary winding of a tfransformer with the
secondary winding open, a small current I called the “exciting current flows™. This
current I is composed by the current flowing through the magnetizing susceptance
B,,, called magnetizing current and a much smaller component which accounts for
losses.

I_EZI_EM-I_I_EL (]2])

Exciting current=Magnetising current + Losses

Please note that so far we have been neglected the core losses by stating: Iz = Igy.



The equivalent circuit of a single-phase m

transformer

Observation#2:
The core losses occur due to two different phenomena:

> Hysteresis loss: cyclic changes of the direction of the flux in the iron require
energy which is dissipated as heat. These losses are reduced by the use of
certain high grades of alloy steel for the core

> Eddy-current loss: circulating currents are induced in the iron due to the
changing flux dissipating a power of |I|?R. Eddy-cur rent loss is reduced by
building up the core with laminated sheets of steel.

Observation#3:
The component of I; that account for the losses leads the magnetizing current Iy, by
90°. In the equivalent circuit, I is taken fully info account by a conductance G, (Ig.) in

parallel with the magnetizing susceptance B, (Igy).



The equivalent circuit of a single-phase m
transformer

r x, IE a’x, atr, - 1,
a: —~
— N N—T0Y 00 ——ANAAS
AL l DA .
Il .[2 T [ ] L ]
b @
Vi G. & B, aV, V,
Y - — Nl N2
IEL J IEM l
ldeal
Figure 1.6

Equivalent circuit for a single-phase transformer with an ideal transformer of turns ratio a = N;/N,.

Main components:

> An ideal transformer provides voltage and current transformation and electrical
isolation of the primary from the secondary. Its characteristics are described by Egs.
(1.3) and (1.6).

» The equivalent circuit presented in Fig. 1.5 takes info account a finite permeability

of the core (i.e. magnetizing currents Iry,). flux leakages and winding resistances.
» The conductance G, represents the core losses



The equivalent circuit of a single-phase
transformer

Starting from Fig. (1.6) we can further simplify the problem by neglecting the exciting
current and omitting the ideal transformer. In this case, all impedances and voltages
in the part of the circuit connected to the secondary terminals must now be referred
to the primary side. The resulting equivalent circuit is shown in Fig. (1.7) where the
parameters R; and X;are defined as follow:

Ry =1 +a®n, X, = x1 +a’x, (1.22)
R, X\
— AT ———
I
Vi aV, Figure 1.7
Transformer equivalent circuit with

- magnetizing current neglected

Voltage regulation is defined as the difference between the voltage magnitude at
the load terminals of the transformer aft full load and at no-load in percent of full-load
voltage with input voltage held constant. In the form of an equation:

Percent regulation = |V2'A|"L/|_|V|2'FL| X100 (1.23)
2,FL
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Simplified equivalent circuit of a single-
phase transformer

Hypothesis:

> Flux varies
sinusoidally in the
core

> Real transformer,
considering core
losses

» EqQuivalent circuit
referred to the
primary winding

Figure 1.8: Equivalent circuit for a single-phase transformer with an ideal
transformer with the following parameters:

a = turns ratio a x1 = wlLy; = Leakage inductance 1
r, = winding resistance 1 x, = wl,; = Leakage inductance 2
r, = winding resistance 2 B,, = Shunt magnetizing susceptance



Simplified equivalent circuit of a single-
phase transformer

r x a‘x, a‘ry 1,

ANA— BT I AAL @l h—
+‘ D —— +‘ S T“f- f +
Il 52— . .
A G, B, E, ¢ aV, % % Vv,
| | Him
' Ideal
Figure 1.9:

Equivalent circuit for a single-phase transformer with an ideal tfransformer

Consideration #1:
The voltage drop across z; = r; + jx4is very small

Consequences:

> Under this condition E; = V;

> It is possible to simplify the circuit by moving the impedance z;on the right
so that it results in series with a?x, and a’r,

> The new impedance Z,. is calculated as:

Zoe = Z1 + j(a?xy) + a®ny (1.24)



Simplified equivalent circuit of a single-
phase transformer

The new equivalent circuit, that lies on the hypothesis of small voltage drop

across the impedance z;is shown in Fig. (1.10)
ch

/m \/\/\/\ a:l —_—

Figure 1.10: Equivalent circuit for a single-phase transformer with an ideal transformer
(Note that G.and B,,, have been re-named into G, and B, and the sign of I, has been
changed in order to get positive component in the following equations).

|deal

This equivalent circuit is particularly important because its parameters can
be determined by a short circuit test and an open circuit test. Indeed, if the
secondary of the transformer is open (I, = 0), the current I, is flowing just
through Y, = G, + jB, and if the secondary is short-circuited (V, = 0), the
current I; is mainly flowing through Z.. = z; + j(a®x,) + a®n,



Simplified equivalent circuit of a single-
phase transformer

The equations ruling the equivalent circuit of Fig.(1.11) are the following:

V, = aV, + 7., ’— (1.25)
N _ - I.
L =Yo(aVy) + YoZee +1) -2 (1.26)
V4
« .
m o a:l 7 —_—

Ty, T kel
LTSRN i)

Figure 1.11

|deal
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Three-phase franstformers

Three idenfical single-phase transformers may be connected so that the three
windings of one voltage rating are A-connected or Y-connected
There are many possible connections such as:

> Y-A > Y-Y
> A-Y > A-A

Instead of using three identical single-phase transformers, a more usual unit is @
three phase transformer where all three phases are on the same iron structure

> The three-phase unit has the advantage of requiring less iron to form the core,
and is therefore more economical than three single-phase units and occupies
less space.

> Three single-phase units have the advantage of replacement of only one unit of
the three-phase bank in case of failure rather than losing the whole three-phase
bank.

» If a failure occurs in a A- A bank composed of three separate units, one of the
single-phase transformers can be removed and the remaining two will still

operate as a three-phase transformer at a reduced kVA. Such an operation is
called open delta.



Three-phase transformers

k= |2 c
H, H, H,
N
—o0— o0 — 200, —
i - ST
| l N
n
X X, ¢ X,
e [o ‘,
(a) Y-Y connection diagram (b) Alternate form of connection diagram
Figure 1.12

Wiring diagrams for Y-Y transformer.

In the following slides:

> Capital letters A, B, and C to identify the phases of the high-voltage windings and
» Lowercase letters g, b, and c for the low-voltage windings.

» The high-voltage terminals of three-phase transformers are marked Hy, H, , H4

» The low-voltage terminals are marked X, X,, X;.



Three-phase transformers

Different connections

XZ
—o-b
/J a e . _
; D 0 X I * I
f ‘ WS RN
HQ °
n B o— N :
_ . .
In X:!
T W
. = I c

. X H. Ibr X
% ¢ ) : ,

A —o

Figure 1.13:
Wiring diagram two three-phase tfransformers connected Y-Y (left) and Y-A (right)

Since it is possible to connect the windings in different configurations, it is important to

understand how the magnetic links between high and low voltage sides of the

transformer are changing.

» In Y-Y tfransformers the markings are such that line-to-neutral HV windings are
always magnetically linked with the line-to-neutral LV windings

» In A-Afransformers the markings are such that line-to-line HV windings are always
magnetically linked with the line-to-line LV windings

» In Y-A transformers the markings are such that line-to-neutral HV windings are
always magnetically linked with the line-to-line LV windings

» In A-Y transformers the markings are such that line-to-line HV windings are always
magnetically linked with the line-to-phase LV windings

In these last two cases the effective ratio will not be equal to the turns ratio and a shift

phase will occur.



Three-phase transformers

Effective ratio
v | ] : e

N,

N, :
|VLN| % V.| [:]ZL

Nl . VLL Nl
elT N,

2 i Ny/V3 P
1| Z s N, L

"L\

N /Y3 Ny/V3

Ny N, —
Viw! Vil ||z, R lVLNI % IVzI Z,
| ! ol 4512y, Mol el Vil

WSN,. D+ 4 " N

VLN N1/‘v/v Vir
Vz Nz/\/_ VI

N /Y3
“ (Nzi‘/—)
The effective ratio r can be defined as the ratio r = |V, /V;;| between the line-to-line voltages.
This ratio is not equal to the turns ratio a = N;/N, but also a function of the geometry of the
system.

> In Y-Y or A-Atransformers the markings are such that line-to-line voltage ratio is given by the
turns ratio a.

> In Y-Atransformers the markings are such that the turns ratio a express the ratio between the
line-to-neutral voltage of the high voltage side and the line-to-line voltage of the low voltage
side. The effective ratio can be calculated by the foIIowing equation:

I7LL \/§ VLN \/— VLN \/'— \/‘—

= |—= = — = 3a
Vll Vll Vll

> Inthe same way, to transfer impedance from the voltage Ievel on one side of a three-phase

transformer to the voltage level on the other, the multiplying factor is the effective ratio and
not the turns ratio

1

VLL
Vi




Three-phase transformers
Phase Shift

Let’s consider a three-phase transformer  4A—— : —~ ¢
connected Y-A where Y side is the high- | 1"7 \, '
voltage side. As previously discussed, the Hy K

_ -

markings are such that line-to-neutral HV o
windings are magnetically linked with . " 7

the line-to-line LV windings. Therefore, c d b
Van is always in phase with V. le

As a result, the line-to-neutral voltage i ///
phase £V, is shifted by 30° in respect to e

”V“’
LV,n Qs visible from Fig. 1.14. A é /5 / ’ ven
R \

Fig.1.14 shows that Van = (%) Vap. i.€. the PN\
2

line-to-neutral primary voltage is in e
phase with the line-to-line secondary _
Figure 1.14:

voltage. By Iooklng. O.T the phasor Wiring diagram and voltage phasors for a three-
geomeiry we obfain: phase transformer connected Y-A where Y side
is the high-voltage side.

VAN = Z_;\/g Van £230° (] 27)



Three-phase franstformers

> Transformer impedance and magnetizing currents are handled separately from the
phase shift, which can be represented by an ideal transformer as in Fig. (1.15) .

> Usually, the high-voltage winding in a Y-A tfransformer is Y-connected to reduce
insulation costs for a given step-up voltage since this connection takes advantage
of the fact that the voltage transformation is then v3(N;/N,).

T 7

Ql §§ } Transmission line i §§ |

to load
)
- A

Figure (1.15)

(a) Single-line diagram;
(a)

c C
%) T j\ % (b) Per-phase equivalent circuits

with parameters in per unit;

—omn I T——] (c) Per-phase equivalent circuit
with resistance, capacitance,
and ideal transformers

) neglected.




Tap changing and regulating transtormers m

» Transformers which provide a small adjustment of voltage magnitude (in
the range of £ 10%)and others which shift the phase angle of the line
voltages are important components of a power system.

> A type of transformer designed for small adjustments of voltage rather
than large changes in voltage levels is called a regulating transformer.

» Almost all fransformers provide taps on windings to adjust the ratio of
transformation by changing taps when the transformer is de-energized
but a change in tap can be made while the transformer is energized, and
such transformers are called load-tap-changing (LTC) transformers or tap-
changing-under-load (TCUL) transformers.



