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The ideal transformer model 3

a) Flux varies sinusoidally in the 
core

+
Ideal transformer:

b) Permeability µ in the core is 
infinite;

c) The flux is entirely confined into 
the core and links all of the 
turns of both coils (or windings)

d) Core losses are zero (electrical  
conductivity of the magnetic 
core is zero)

e) Winding resistances are zero 
(Electrical conductivity of the 
windings is infinite) Figure 1.1 – Two-winding transformer. 

Hypothesis

A transformer is a static electrical 
machine made by of two (or more) 
coils (or windings) placed so that 
they are linked by the same 
magnetic flux. 

Winding 1

Magnetic Core



4The ideal transformer model
Ø Hypothesis (b), (c) and (d) à  The flux 𝜙 that links winding 1 is the 

same that links winding 2 (i.e., there is no leakage of the flux)
Ø Winding resistances are zero (e) à the voltages 𝒆𝟏 and 𝒆𝟐 

induced by the changing flux must equal the terminal voltages 
𝒗𝟏and 𝒗𝟐 (Faraday’s law).

   𝑣# = 𝑒# = 𝑁#
$%
$&

            (1.1)

   𝑣' = 𝑒' = 𝑁'
$%
$&

            (1.2)

Figure 1.1 – Two-winding transformer. 



5The ideal transformer model
Ø Flux varies sinusoidally in the core (a) à phasor representation of 

voltages:
𝑣#

() (𝑉#, 𝑣'
() (𝑉', 𝑒#

() (𝐸#, 𝑒'
() (𝐸'

Ø Dividing Eq. (1.1) by (1.2) written in the frequency domain, we 
obtain:

      
"#!
"#"
=

$%!
$%"
= &!

&"
                        (1.3)

Figure 1.2 – Schematics representation of an ideal two winding 
transformer 



6The ideal transformer model

Ø By applying Ampère’s law ∮ℓ 𝐻 ) 𝑑𝑙 = ∬𝒮 𝐽 ) 𝑑𝑆 , where 𝐻 is the magnetic 
field strength and 𝐽 is the current density, around each of the closed 
paths ℓ of flux shown by dotted lines in Fig. 1.1 and the corresponding 
surface 𝒮 we obtain:

   ∮𝐻 ⋅ 𝑑𝑙 = 𝑁#𝑖# − 𝑁'𝑖'            (1.4)
 

ℓ

𝒮

Figure 1.1 – Two-winding transformer. 



7The ideal transformer model

Ø Thanks to the hypothesis of infinite permeability (b), it is possible to say that 
∮ℓ 𝐻 ) 𝑑𝑙 = 0. If this were not true, flux density (being equal to 𝜇H) would be 
infinite. As a consequence, converting the currents to phasor form Eq. 1.4 
becomes: 

0 = 𝑁# ̅𝐼# − 𝑁' ̅𝐼'            (1.5)
        

| ̅6!|
| ̅6"|

= 7"
7!

            (1.6)

Note that 𝐼# and 𝐼$ are in phase if we choose the current to be like in Figure 
1.1, or 1.2. If the direction chosen for either current is reversed, they are 180° 
out of phase. 



8The ideal transformer model
Ø The transformer winding across which an impedance or another load may 

be connected is called the secondary winding, and any circuit elements 
connected to this winding are said to be on the secondary side* of the 
transformer. 

Ø The winding which is toward the source of energy is called the primary 
winding on the primary side*.

Ø If an impedance 𝑍$ is connected across winding 2 of Figs. 1.1 or 1.2 we get:

𝑍̅' =
*+!
̅-!

(1.7)

Ø By substituting for 𝑉$ and 𝐼$the values found in Eqs. (1.3) and (1.6) 
        

𝑍̅' =
."!
"#

*+#
."#
"!

̅-#
= /!

/#

' *+#
̅-#
= /!

/#

'
𝑍̅'0 (1.8)

Where 𝑍̅$% is the equivalent impedance seen by the primary winding 𝑍̅$% =
&'!
̅)!

* In the power system energy often will flow in either direction through a transformer and the 
designation of primary and secondary loses its meaning.
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Hypothesis:
Ø Flux varies sinusoidally in the 

core
Ø Ideal transformer

Summary

Main equations:
      

"#!
"#"
= &!

&"
       (1.3)  | ̅6!|

| ̅6"|
= 7"

7!
   (1.6)

Power balance: it is also worth noting that the complex power input to the 
primary winding equals the complex power output from the secondary 
winding since we are considering an ideal transformer. In fact:

̅𝑆# = (𝑉#𝐼# =
1#
1!
(𝑉' ⋅

1!
1#
𝐼' = (𝑉'𝐼' = ̅𝑆'          (1.9)
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Magnetically coupled coils 11

Ideal transformer:

Permeability µ in the 
core is infinite;

The flux is confined to 
the core and links all of 
the turns of both 
windings 

Core losses are zero 
(Electrical  conductivity 
of the core is zero)

Winding resistances are 
zero 

Hypothesis

Real transformer:

Permeability µ in the 
core is finite;

The flux is not confined 
to the core. Not all the 
flux linking one of the 
windings links the other 
windings

Core losses are 
occurring

Winding resistances is 
present

STUDY CASE:

Permeability µ in the core 
is finite;

The flux is not confined to 
the core. Not all the flux 
linking one of the 
windings links the other 
windings

Core losses are zero 
(Electrical  conductivity 
of the core is zero)

Winding resistances is 
present
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In Fig. 1.3 the direction of current 𝑖$ is chosen to 
produce flux (according to the right-hand rule) in 
the same sense as 𝑖#  when both currents are 
either positive or negative. This choice gives 
positive coefficients in the equations which 
follow. 

Figure 1.3 (a):
Mutual flux due to currents 𝑖# and 𝑖$ 

𝑿𝒂𝒃 expresses:
§ quantity 𝑋 (flux or 

inductance) 
§ of coil 𝑎 
§ due to current 𝑖$
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Figure 1.3 (c):
Leakage flux 𝜙'2

and mutual flux 𝜙#' 
due to 𝑖' alone 

Figure 1.3 (b):
Leakage flux 𝜙#* 
and mutual flux 𝜙$# 
due to 𝑖#alone 

𝑿𝒂𝒃 expresses:
Ø quantity 𝑋 (flux 

or inductance) 
Øof coil 𝑎 
Ødue to current 𝑖$

In Fig. 1.3 (b) and (c) it is shown the effect of each of 
the two currents, respectively 𝑖# and 𝑖$, acting alone.
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The current 𝑖% acting alone produces flux 𝜙%%which has a mutual component 𝜙&% 
linking both coils and a small leakage component 𝜙%' linking only coil one. The flux 
linkages of coil 1 due to current 𝑖% acting alone are given by:

𝜆%% = 𝑁%𝜙%% = 𝐿%%𝑖%                                       (1.10)

where 𝑁% is the number of turns and 𝐿%% is the self-inductance of coil 1.
Under the same condition of 𝑖% acting alone the flux linkages of coil 2 are given by:

𝜆&% = 𝑁&𝜙&% = 𝐿&%𝑖%                        (1.11)

where 𝑁& is the number of turns and 𝐿&% is the mutual-inductance between the coils. 

Figure 1.3 (b):
Leakage flux 𝜙!" and mutual flux 𝜙#! due to 𝑖!alone 𝜙!!

𝜙88 = 𝜙98 + 𝜙8:

𝑖? acting alone
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The current 𝑖& acting alone produces flux 𝜙&& which has a mutual component 
𝜙%& linking both coils and a small leakage component 𝜙&' linking only coil one. The flux 
linkages of coil 2 due to current 𝑖& acting alone are given by:

𝜆&& = 𝑁&𝜙&& = 𝐿&&𝑖&                                       (1.12)

where 𝑁& is the number of turns and 𝐿&& is the self-inductance of coil 2.
Under the same condition of 𝑖& acting alone the flux linkages of coil 1 are given by:

𝜆%& = 𝑁%𝜙%& = 𝐿%&𝑖&                        (1.13)

where 𝑁% is the number of turns and 𝐿%& is the mutual-inductance between the coils.
Please note that mutual inductance is a single reciprocal property of the coils, and so
𝐿%& = 𝐿&% > 0 because of 𝑖% and 𝑖&.

𝜙!!

𝜙99 = 𝜙89 + 𝜙9:

𝑖@ acting alone

Figure 1.3 (c):
Leakage flux 𝜙#" and mutual flux 𝜙!# due to 𝑖# alone 𝜙""
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When both currents act together, the flux linkages add (the transformer is supposed, 
for the moment, to be linear) to give: 

𝜆% = 𝜆%% + 𝜆%& = 𝐿%%𝑖%+ 𝐿%&𝑖&                            (1.14)

𝜆& = 𝜆&& + 𝜆&% = 𝐿&%𝑖%+ 𝐿&&𝑖&                            (1.15)

It is now possible to rewrite Eq. (1.1), expressing Faraday’s law, but considering a 
winding resistance greater than 0 :

𝑣% = 𝑟%𝑖% +
*+#
*,

= 𝑟%𝑖% + 𝐿%%
*-#
*,
+ L%&

*-$
*,

            (1.16)

𝑣& = 𝑟&𝑖& +
*+$
*,

= 𝑟&𝑖& + 𝐿&%
*-#
*,
+ L&&

*-$
*,

            (1.17)

where 𝑁%
*.
*,
= *+

*,
, namely the flux linkages.

Figure 1.3 (a):
Mutual flux due to currents 𝑖! and 𝑖# 
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The obtained equations are:

𝑣% = 𝑟%𝑖% +
*+#
*, = 𝑟%𝑖% + 𝐿%%

*-#
*, + L%&

*-$
*,             (1.16)

𝑣& = 𝑟&𝑖& +
*+$
*, = 𝑟&𝑖& + 𝐿&%

*-#
*, + L&&

*-$
*,             (1.17)

These can be modified as follow:

𝑣% = 𝑟%𝑖% +
*+#
*,

= 𝑟%𝑖% + 𝐿%%
*-#
*,
− L%&

/#
/$

*-#
*,

+ L%&
/#
/$

*-#
*,

+ L%&
*-$
*,

           (1.16)

𝑣& = 𝑟&𝑖& +
*+$
*,

= 𝑟&𝑖& + L&&
*-$
*,

 −L&%
/$
/#

*-$
*,

+ L&%
/$
/#

*-$
*,

+𝐿&%
*-#
*,

          (1.17)

If we now consider 𝑎	 = 	𝑁%/𝑁&

𝑣% = 𝑟%𝑖% +
*
*,

(𝐿%%−𝐿%&𝑎)𝑖% + 𝐿%&𝑎𝑖% + 𝐿%&𝑖&
𝑣& = 𝑟&𝑖& +

*
*, (𝐿&&−𝐿&%/𝑎)𝑖& + 𝐿&%/𝑎𝑖& + 𝐿%& 𝑖%  



Magnetically coupled coils 18

𝑣% = 𝑟%𝑖% +
𝑑
𝑑𝑡 (𝐿%%−𝐿%&𝑎)𝑖% + 𝐿%&𝑎𝑖% + 𝐿%&𝑖&

𝑣& = 𝑟&𝑖& +
𝑑
𝑑𝑡 (𝐿&&−𝐿&%/𝑎)𝑖& + 𝐿%&/𝑎𝑖& + 𝐿%&𝑖%

The quantity 𝐿%% − 𝑎𝐿%&  is the leakage inductance 𝑳𝟏𝒍 (by knowing that	𝜙%%= 𝜙&% +
𝜙%') and that 𝑎𝐿%& is the magnetizing inductance associated with the mutual flux 𝜙&% 
linking the coils due to 𝑖%

𝐿%% − 𝑎𝐿&% = 𝐿%' = Leakage inductance 1
(𝐿&& − 𝐿&%/𝑎) = 𝐿&' = Leakage inductance 2

𝑣% = 𝑟%𝑖% +
𝑑
𝑑𝑡

𝐿%'𝑖% + 𝑁%
𝐿%&
𝑁&

𝑖% +
𝐿&%
𝑁%

𝑖&

𝑣& = 𝑟&𝑖& +
𝑑
𝑑𝑡

𝐿&'𝑖& + 𝑁&
𝐿%&
𝑁%

𝑖& +
𝐿&%
𝑁&

𝑖%

Note that 𝐿&% = 𝐿%& =
+#$
-$
= +$#

-#
= 2$.$#

-#
= 2#.#$

-$
from (1.10) and (1.13)
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𝑣% = 𝑟%𝑖% +
*
*, 𝐿%'𝑖% +	 𝑁%

3#$
2$
𝑖% +

3$#
2#
𝑖& 	

 
𝑣& = 𝑟&𝑖& +

*
*, 𝐿&'𝑖& + 𝑁&

3#$
2#
𝑖& +

3$#
2$
𝑖% 	by referring this to the primary we have:

𝑣&𝑎 = 𝑟&𝑖&𝑎 +
*
*,

𝐿&'𝑖&𝑎 + 𝑁&𝑎
3#$
2#
𝑖& +

3$#
2$
𝑖% 	

𝑣&𝑎 = 𝑟&𝑖&
2#
2$

2$
2#

2#
2$
+ *
*,

𝐿&'𝑖&
2#
2$

2$
2#

2#
2$
+ 𝑁&

2#
2$

3#$
2#
𝑖& +

3$#
2$
𝑖% 	

𝑣&𝑎 = 𝑟&𝑖&
2#
2$

2$
2#

2#
2$
+ *
*, 𝐿&'𝑖&

2#
2$

2$
2#

2#
2$
+ 𝑁&

2#
2$

3#$
2#
𝑖& +

3$#
2$
𝑖% 	

𝑣&𝑎 = 𝑎&𝑟&
-$
4
+ *
*,

𝑎&𝐿&'
-$
4
+ 𝑁%

3#$
2#
𝑖& +

3$#
2$
𝑖% 	

Now, the terms in the red squares, common to both equations, are equal to:

𝑁%
𝐿%&
𝑁%

𝑖& +
𝐿&%
𝑁&

𝑖% = 𝑎𝐿&%(𝑖% + 𝑖&/𝑎)
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𝑣% = 𝑟%𝑖% +
*
*, 𝐿%'𝑖% +	 𝑁%

3#$
2$
𝑖% +

3$#
2#
𝑖& 	

 
𝑣&𝑎 = 𝑎&𝑟&

-$
4 +

*
*, 𝑎&𝐿&'

-$
4 + 𝑁%

3#$
2#
𝑖& +

3$#
2$
𝑖% 	

The terms in the red squares, common to both equations, are equal to:

𝑁%
𝐿%&
𝑁%

𝑖& +
𝐿&%
𝑁&

𝑖% = 𝑎𝐿&%(𝑖% + 𝑖&/𝑎)

𝑣% = 𝑟%𝑖% +
*
*, 𝐿%'𝑖% + 𝑎𝐿&%(𝑖% + 𝑖&/𝑎) 

 
𝑣&𝑎 = 𝑎&𝑟&

-$
4 +

*
*, 𝑎&𝐿&'

-$
4 + 𝑎𝐿&%(𝑖% + 𝑖&/𝑎) 

𝑣&5 = 𝑟&5𝑖&5 +
*
*, 𝐿&'

5 𝑖&5 + 𝑎𝐿&%(𝑖% + 𝑖&/𝑎) 
Note that the notation of the equations 
refers to time-domain quantities while the 
one in the figure refers to frequency-
domain quantities (i.e. phasors)
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Figure 1.4: An AC equivalent circuit with secondary 
current and voltage redefined and a = N1/N2. 

𝐾𝑉𝐿! 𝐾𝑉𝐿"

𝐾𝑉𝐿%: :𝑉% = ̅𝐼%𝑟% + ̅𝐼% 𝑗𝜔𝐿%% − 𝑎 ̅𝐼% 𝑗𝜔𝐿&% + 𝑎 𝑗𝜔𝐿&% ̅𝐼% + ?̅𝐼& 𝑎

:𝑉% = ̅𝐼%𝑟% + ̅𝐼% 𝑗𝜔𝐿%% + ̅𝐼& 𝑗𝜔𝐿&% à Eq.	(1.18)

𝐾𝑉𝐿&: 𝑎 :𝑉& =
̅𝐼&
𝑎

𝑎&𝑟& +
̅𝐼&
𝑎

𝑎& 𝑗𝜔𝐿&& −
̅𝐼&
𝑎

𝑎& 𝑗𝜔
𝐿%&
𝑎

+ 𝑎 𝑗𝜔𝐿&% ̅𝐼% +
̅𝐼&
𝑎

:𝑉& = ̅𝐼&𝑟& + ̅𝐼& 𝑗𝜔𝐿&& − ̅𝐼& 𝑗𝜔 3#$
4 + ̅𝐼& 𝑗𝜔 3$#

4 + ̅𝐼% 𝑗𝜔𝐿&%

:𝑉& = ̅𝐼&𝑟& + ̅𝐼& 𝑗𝜔𝐿&& + ̅𝐼% 𝑗𝜔𝐿&% à Eq.	(1.19)

An important equivalent circuit, referred 
to the primary winding, for the mutually 
coupled coils is shown in Fig. 1.4.
All the quantities of the secondary 
winding  are referred to the primary in 
analogy with Eq. (1.8). It is possible, by 
writing Kirchhoff's voltage equation 
around the path of each of the currents 
𝐼% and 9$

4
, to obtain the two fundamental 

Eq.(1.18) and (1.19).
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Hypothesis:
Ø Flux varies sinusoidally 

in the core
Ø Real transformer but 

neglecting core losses
Ø Equivalent circuit 

referred to the primary 
winding

Summary

Main equations:

$𝑉? = (𝑟?+𝑗𝜔𝐿??) ̅𝐼? + 𝑗𝜔𝐿?@ ̅𝐼@ (1.18)
$𝑉@ = 𝑗𝜔𝐿@? ̅𝐼? + 𝑟@ + 𝑗𝜔𝐿@@ ̅𝐼@      (1.19)

Magnetically coupled coils

Figure 1.5  The equivalent circuit of Fig. 1.4 with inductance 
parameters renamed as follow:
𝑥! = 𝜔 𝐿!! − 𝑎𝐿"! = 𝜔𝐿!% = Leakage inductance 1 *
𝑥" = 𝜔(𝐿"" − 𝐿"!/𝑎) = 𝜔𝐿"% = Leakage inductance 2 *
𝐵& = 𝑎𝜔𝐿"! '! = Shunt magnetizing susceptance*

* It is possible to prove that the quantity 𝐿!! − 𝑎𝐿"!  is the leakage inductance 𝐿!% by knowing 
that	𝜙!!= 𝜙"! + 𝜙!% and that 𝑎𝐿"! is a magnetizing inductance associated with the mutual flux 𝜙"! 
linking the coils due to 𝑖! since:

    𝑎𝐿"! =
(#
($

($)$#
*#

= (#
*#
𝜙"!                   (1.20)
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The equivalent circuit of a single-phase 
transformer

24

A further step has to be done to match the physical characteristics of the practical 
transformer. In fact, the previous equivalent circuit presents  three main deficiencies:
Ø It does not reflect any current or voltage transformation, 
Ø It does not provide for electrical isolation of the primary from the secondary
Ø It does not account for the core losses.

Observation#1:
If a sinusoidal voltage is applied to the primary winding of a transformer with the 
secondary winding open, a small current 𝐼: called the “exciting current flows”. This 
current 𝐼: is composed by the current flowing through the magnetizing susceptance 
𝐵;, called magnetizing current and a much smaller component which accounts for 
losses.

̅𝐼: = ̅𝐼:< + ̅𝐼:3               (1.21)

Exciting current=Magnetising current + Losses

Please note that so far we have been neglected the core losses by stating: ̅𝐼: H= ̅𝐼:<.



The equivalent circuit of a single-phase 
transformer
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Observation#2:
The core losses occur due to two different phenomena:

Ø Hysteresis loss: cyclic changes of the direction of the flux in the iron require 
energy which is dissipated as heat. These losses are reduced by the use of 
certain high grades of alloy steel for the core

Ø Eddy-current loss: circulating currents are induced in the iron due to the 
changing flux dissipating a power of 𝐼 &𝑅. Eddy-cur rent loss is reduced by 
building up the core with laminated sheets of steel.

Observation#3:

The component of ̅𝐼:3 that account for the losses leads the magnetizing current ̅𝐼:< by 

90°. In the equivalent circuit, ̅𝐼: is taken fully into account by a conductance 𝐺= ( ̅𝐼:3) in 

parallel with the magnetizing susceptance 𝐵; ( ̅𝐼:<).



The equivalent circuit of a single-phase 
transformer
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Main components:

Ø An ideal transformer provides voltage and current transformation and electrical 
isolation of the primary from the secondary. Its characteristics are described by Eqs. 
(1.3) and (1.6).

Ø The equivalent circuit presented in Fig. 1.5 takes into account a finite permeability 
of the core (i.e. magnetizing currents ̅𝐼:<), flux leakages and winding resistances.

Ø The conductance 𝐺> represents the core losses

Figure 1.6 
Equivalent circuit for a single-phase transformer with an ideal transformer of turns ratio a = N1/N2. 

"𝐼+

𝐼+, 𝐼+-



The equivalent circuit of a single-phase 
transformer
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Starting from Fig. (1.6) we can further simplify the problem by neglecting the exciting 
current and omitting the ideal transformer. In this case, all impedances and voltages 
in the part of the circuit connected to the secondary terminals must now be referred 
to the primary side. The resulting equivalent circuit is shown in Fig. (1.7) where the 
parameters 𝑅% and 𝑋%are defined as follow:

𝑅% = 𝑟% + 𝑎&𝑟& 𝑋% = 𝑥% + 𝑎&𝑥&             (1.22)

Voltage regulation is defined as the difference between the voltage magnitude at 
the load terminals of the transformer at full load and at no-load in percent of full-load 
voltage with input voltage held constant. In the form of an equation:

Percent regulation = ?$,,- @ ?$,.-
?$,.-

×100                                (1.23)

Figure 1.7 
Transformer equivalent circuit with 
magnetizing current neglected 
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Hypothesis:
Ø Flux varies 

sinusoidally in the 
core

Ø Real transformer, 
considering core 
losses

Ø Equivalent circuit 
referred to the 
primary winding

Simplified equivalent circuit of a single-
phase transformer

Figure 1.8: Equivalent circuit for a single-phase transformer with an ideal 
transformer with the following parameters:

𝒂 = turns ratio a 
𝒓𝟏 = winding resistance 1
𝒓𝟐 = winding resistance 2

𝒙𝟏 = 𝜔𝐿#* = Leakage inductance 1
𝒙𝟐 = 𝜔𝐿$* = Leakage inductance 2
𝑩𝒎 = Shunt magnetizing susceptance
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Consideration #1:
The voltage drop across ̅𝑧# = 𝑟# + 𝑗𝑥#is very small

Consequences:
Ø Under this condition $𝐸# L= $𝑉#
Ø It is possible to simplify the circuit by moving the impedance ̅𝑧#on the right 

so that it results in series with 𝑎$𝑥$ and 𝑎$r$
Ø The new impedance 𝑍̅11 is calculated as: 

𝑍̅11 = ̅𝑧# + 𝑗(𝑎$𝑥$) + 𝑎$𝑟$                        (1.24)

1

Figure 1.9: 
Equivalent circuit for a single-phase transformer with an ideal transformer
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The new equivalent circuit, that lies on the hypothesis of small voltage drop 
across the impedance 𝑧#is shown in Fig. (1.10)

!""

# #

This equivalent circuit is particularly important because its parameters can 
be determined by a short circuit test and an open circuit test. Indeed, if the 
secondary of the transformer is open (𝐼$ = 0), the current 𝐼# is flowing just  
through $𝑌2 = 𝐺2 + 𝑗𝐵2  and if the secondary is short-circuited 𝑉$ = 0 , the 
current 𝐼# is mainly flowing through 𝑍̅11 = ̅𝑧# + 𝑗(𝑎$𝑥$) + 𝑎$𝑟$

Figure 1.10:  Equivalent circuit for a single-phase transformer with an ideal transformer
(Note that 𝐺>and 𝐵; have been re-named into 𝐺A and 𝐵A and the sign of 𝐼& has been 
changed in order to get positive component in the following equations).
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The equations ruling the equivalent circuit of Fig.(1.11) are the following:

(𝑉# = 𝑎(𝑉' + 𝑍̅33 ⋅
̅-!
4

                       (1.25)

̅𝐼# = (𝑌5 𝑎 (𝑉' + ((𝑌5𝑍̅33 + 1) ⋅
̅-!
4

                  (1.26)

!""

# #

Figure 1.11
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Three identical single-phase transformers may be connected so that the three 
windings of one voltage rating are Δ-connected or Y-connected
There are many possible connections such as:

Ø Y-Δ
Ø Δ-Y

Ø Y-Y 
Ø Δ-Δ

Instead of using three identical single-phase transformers, a more usual unit is a 
three phase transformer where all three phases are on the same iron structure

Ø The three-phase unit has the advantage of requiring less iron to form the core, 
and is therefore more economical than three single-phase units and occupies 
less space. 

Ø Three single-phase units have the advantage of replacement of only one unit of 
the three-phase bank in case of failure rather than losing the whole three-phase 
bank. 

Ø If a failure occurs in a Δ - Δ bank composed of three separate units, one of the 
single-phase transformers can be removed and the remaining two will still 
operate as a three-phase transformer at a reduced kVA. Such an operation is 
called open delta.
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In the following slides:

Ø Capital letters A, B, and C to identify the phases of the high-voltage windings and
Ø Lowercase letters a, b, and c for the low-voltage windings. 
Ø The high-voltage terminals of three-phase transformers are marked 𝐻%, 𝐻& , 𝐻B
Ø The low-voltage terminals are marked 𝑋%, 𝑋&, 𝑋B. 

Figure 1.12 
Wiring diagrams for Y-Y transformer. 
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Since it is possible to connect the windings in different configurations, it is important to
understand how the magnetic links between high and low voltage sides of the
transformer are changing.
Ø In Y-Y transformers the markings are such that line-to-neutral HV windings are 

always magnetically linked with the line-to-neutral LV windings
Ø In Δ-Δ transformers the markings are such that line-to-line HV windings are always 

magnetically linked with the line-to-line LV windings
Ø In 𝑌-Δ transformers the markings are such that line-to-neutral HV windings are 

always magnetically linked with the line-to-line LV windings
Ø In Δ-Y transformers the markings are such that line-to-line HV windings are always 

magnetically linked with the line-to-phase LV windings
In these last two cases the effective ratio will not be equal to the turns ratio and a shift 
phase will occur.

Different connections

Figure 1.13:
Wiring diagram two three-phase transformers connected Y-Y (left) and Y-Δ (right)
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The effective ratio 𝐫 can be defined as the ratio 𝐫 = 4𝑉///4𝑉%% between the line-to-line voltages.
This ratio is not equal to the turns ratio 𝐚 = 𝑵𝟏/𝑵𝟐 but also a function of the geometry of the 
system.
Ø In Y-Y or Δ-Δ transformers the markings are such that line-to-line voltage ratio is given by the 

turns ratio a.
Ø In Y-Δ transformers the markings are such that the turns ratio 𝐚 express the ratio between the 

line-to-neutral voltage of the high voltage side and the line-to-line voltage of the low voltage 
side. The effective ratio can be calculated by the following equation:

r =
4𝑉//
4𝑉%%

=
3 4𝑉/(
4𝑉%%

= 3
4𝑉/(
4𝑉%%

= 3
𝑁!
𝑁"

= 3𝑎

Ø In the same way, to transfer impedance from the voltage level on one side of a three-phase 
transformer to the voltage level on the other, the multiplying factor is the effective ratio and 
not the turns ratio

Effective ratio
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Let’s consider a three-phase transformer 
connected Y-Δ where Y side is the high-
voltage side. As previously discussed, the 
markings are such that line-to-neutral HV 
windings are magnetically linked with 
the line-to-line LV windings. Therefore, 
:𝑉C2 is always in phase with :𝑉4$.

As a result, the line-to-neutral voltage 
phase ∠𝑉4D is shifted by 30° in respect to 
∠𝑉C2 as visible from Fig. 1.14. 

Fig.1.14 shows that :𝑉E/ =
2#
2$

:𝑉4$, i.e. the 
line-to-neutral primary voltage is in 
phase with the line-to-line secondary 
voltage. By looking at the phasor 
geometry we obtain:

:𝑉C2 =
2#
2$

3 :𝑉4D ∠30°             (1.27)

Phase Shift

Figure 1.14:
Wiring diagram and voltage phasors for a three-
phase transformer connected Y-Δ where Y side
is the high-voltage side.
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Ø Transformer impedance and magnetizing currents are handled separately from the 
phase shift, which can be represented by an ideal transformer as in Fig. (1.15) . 

Ø Usually, the high-voltage winding in a Y-Δ transformer is Y-connected to reduce 
insulation costs for a given step-up voltage since this connection takes advantage 
of the fact that the voltage transformation is then 3(𝑁%/𝑁&).

Figure (1.15)

(a) Single-line diagram; 

(b) Per-phase equivalent circuits 
with parameters in per unit; 

(c) Per-phase equivalent circuit 
with resistance, capacitance, 
and ideal transformers 
neglected. 
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Ø Transformers which provide a small adjustment of voltage magnitude (in 
the range of ± 10%)and others which shift the phase angle of the line 
voltages are important components of a power system. 

Ø A type of transformer designed for small adjustments of voltage rather 
than large changes in voltage levels is called a regulating transformer. 

Ø Almost all transformers provide taps on windings to adjust the ratio of 
transformation by changing taps when the transformer is de-energized 
but a change in tap can be made while the transformer is energized, and 
such transformers are called load-tap-changing (LTC) transformers or tap-
changing-under-load (TCUL) transformers. 

Tap changing and regulating transformers


